Currently, methods to synthesize tungsten bronze compounds mainly are the wet chemical method, heat reduction method and thermal decomposition method. Wet chemical method to synthesize ammonium tungsten bronze is to put the starting material in the reducing solvent refluxing for several days, size of the sample obtained by this method is too large, it’s usually between a few to ten micron, and the preparation process Common Turning Inserts requires a long time and high energy consumption. Thermal reduction method is to uniformly mix tungsten oxide, tungsten powder and metal tungstates in proper proportions, then heated in a vacuum or under an inert atmosphere, the reaction temperature is usually about 1000 ℃, and remove unreacted impurities after the reaction is completed. Since the thermal stability of ammonium tungsten bronze difference is poor and decomposition temperature (300 ℃) is lower than the synthesis temperature, the thermal reduction method can not be used to synthesize ammonium tungsten bronze. The thermal decomposition method to synthesize ammonium tungsten bronze is to heat and decompose ammonium paratungstate in a reducing atmosphere (H2 or a mixed gas of H2, Ar, etc.), the size of the resulting sample is too large, and this method can not obtain completely pure phase ammonium tungsten bronze, ammonium content in sample is too low and easy to excessive decomposed into tungsten oxide.