Tungsten copper is a kind of psudoalloy, which is composed of W with body-centered cubic structure (bcc) and Cu with face-centered cubic (fcc) structure and they are immiscible or not forming intermetallic compound. It not only has high hardness, high strength, low coefficient of thermal expansion and excellent wear resistance and corrosion resistance of W, but also has excellent electrical conductivity, thermal conductivity and plasticity, which can be widely used carbide Drilling Inserts in some electrical contact materials or electrode materials. Generally, the basic process is: mixing → forming → infiltration, sintering → post-processing.
But tungsten copper electrode fabricated by conventional process, regardless of liquid-phase sintering or solid-phase sintering, the relative density of tungsten copper products produced will lower than 98% because of the wetting angle and the insoluble W in liquid Cu. Although the heating process and re-pressing or re-sintering can remarkably improve this situation, the cost is increasing and the overall efficiency is decreasing. Furthermore, in the sintering process will happen inevitably growth of tungsten grains, which would make it difficult to meet the performance of the market demands tungsten copper electrode material now.
In order to improve the sintering density of tungsten copper electrode and other tungsten copper composite materials, relevant researchers use activated sintering by adding additives. However, the activator can significantly improve the density of tungsten-copper alloy, it will also have some effects on the electrical and thermal conductivity, which is not suitable for the occasions has high demands on electrical and thermal conductivity. So chemical co-precipitation of copper tungsten nano composite powder prepared by reduction combined with hydrogen, by pressing and sintering process to obtain a high-performance compact tungsten copper alloy electrodes become a new hotspot.